We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N-1/N results in a significant acceleration of the convergence

Anharmonic phonon-phonon scattering modeling of three-dimensional atomistic transport. An efficient quantum treatment / Lee, Y; Bescond, M; Logoteta, D; Cavassilas, N; Lannoo, M; Luisier, M. - In: PHYSICAL REVIEW. B. - ISSN 2469-9969. - 97:20(2018), pp. 1-10. [10.1103/PhysRevB.97.205447]

Anharmonic phonon-phonon scattering modeling of three-dimensional atomistic transport. An efficient quantum treatment

Logoteta D;
2018

Abstract

We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N-1/N results in a significant acceleration of the convergence
2018
phonons; quantum chemistry
01 Pubblicazione su rivista::01a Articolo in rivista
Anharmonic phonon-phonon scattering modeling of three-dimensional atomistic transport. An efficient quantum treatment / Lee, Y; Bescond, M; Logoteta, D; Cavassilas, N; Lannoo, M; Luisier, M. - In: PHYSICAL REVIEW. B. - ISSN 2469-9969. - 97:20(2018), pp. 1-10. [10.1103/PhysRevB.97.205447]
File allegati a questo prodotto
File Dimensione Formato  
Lee_Anharmonic phonon_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1675117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact